Hello Aspirants. Welcome to Online Quantitative Aptitude Section in AffairsCloud.com. Here we are creating sample questions in** Quadratic Equations** which is common for all the competitive exams. We have included Some questions that are repeatedly asked in bank exams !!!

Follow the link **To solve Quadratic Equations with the help of Number Line**

**6x**^{2}– x – 2 = 0, 4y^{2}– 4y – 3 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**E) If X = Y or relation cannot be established**

Explanation:

6x^{2}– x – 2 = 0

6x^{2}+ 3x – 4x – 2 = 0

Gives x = -1/2, 2/3

4y^{2}– 4y – 3 = 0

4y^{2}+ 2y – 6y – 3 = 0

Gives y = -1/2, 3/2

Put on number line

-1/2 2/3 3/2

When x = -1/2, y ≥ x

When x = 2/3 y(-1/2) < x, and y(3/2) > x

So relation cannot be determined**3x**^{2}– 4x – 4 = 0, 2y^{2}– 9y + 10 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**D) If X ≤ Y**

Explanation:

3x^{2}– 4x – 4 = 0

3x^{2}+ 2x – 6x – 4 = 0

Gives x = -2/3 , 2

2y^{2}– 9y + 10 = 0

2y^{2}– 4y – 5y + 10 = 0

Gives y = 2, 5/2

Put on number line

-2/3 2 5/2**5x**^{2}– 13x – 6 = 0, 3y^{2}+ 14y + 8 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**A) If X > Y**

Explanation:

5x^{2}– 13x – 6 = 0

5x^{2}+ 2x – 15x – 6 = 0

Gives x = -2/5, 3

3y^{2}+ 14y + 8 = 0

3y^{2}+ 12y + 2y + 8 = 0

Gives y = -4, -2/3

Put on number line

-4 -2/3 2/5 3**2x**^{2}+ 17x + 30 = 0, 2y^{2}+ 13y + 18 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**E) If X=Y or cannot be established**

Explanation:

2x^{2}+ 17x + 30 = 0

2x^{2}+ 12x + 5x + 30 = 0

Gives x = -6, -5/2

2y^{2}+ 13y + 18 = 0

2y^{2}+ 4y + 9y + 18 = 0

Gives y = -9/2, -2

Put on number line

-6 -9/2 -5/2 -2**4x**^{2}+ 23x + 15 = 0, 4y^{2}– 11y + 6 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**B) If X < Y**

Explanation:

4x^{2}+ 23x + 15 = 0

4x^{2}+ 20x + 3x + 15 = 0

Gives x = -5, -3/4

4y^{2}– 11y + 6 = 0

4y^{2}– 8y – 3y + 6 = 0

Gives y= 3/4 2

Put on number line

-5 -3/4 3/4 2**4x**^{2}+ 13x + 3 = 0, 4y^{2}– 7y – 2 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**D) If X ≤ Y**

Explanation:

4x^{2}+ 13x + 3 = 0

4x^{2}+ 12x + x + 3 = 0

Gives x = -3, -1/4

4y^{2}– 7y – 2 = 0

4y^{2}– 8y + y – 2 = 0

Gives y = -1/4 2

Put on number line

-3 -1/4 2**x**^{2}+ x – 6 = 0, 4y^{2}+ 13y + 3 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**E) If X = Y or relation cannot be established**

Explanation:

x^{2}+ x – 6 = 0

x^{2}– 2x + 3x – 6 = 0

Gives x = -3, 2

4y^{2}+ 13y + 3 = 0

4y^{2}+ 12y + y + 3 = 0

Gives y = -3, -1/4

Put on number line

-3 -1/4 2**3x**^{2}+ 4x – 7 = 0, 3y^{2}+ 5y – 2 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**E) If X = Y or relation cannot be established**

Explanation:

3x^{2}+ 4x – 7 = 0

3x^{2}+ 7x – 3x – 7 = 0

Gives x = -7/3, 1

3y^{2}+ 5y – 2 = 0

3y^{2}+ 6y – y – 2 = 0

Gives y = -2, 1/3

Put on number line

-7/3 -2 1/3 1**3x**^{2}– 10x + 8 = 0, 3y^{2}+ 14y + 16 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**A) If X > Y**

Explanation:

3x^{2}– 10x + 8 = 0

3x^{2}– 6x – 4x + 8 = 0

Gives x = 2, 4/3

3y^{2}+ 14y + 16 = 0

3y^{2}+ 6y + 8y + 16 = 0

Gives y = -8/3, -2

Put on number line

-8/3 -2 2 4/3**3x**^{2}+ 16x + 20 = 0, 3y^{2}+ 8y + 4 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**D) If X ≤ Y**

Explanation:

3x^{2}+ 16x + 20 = 0

3x^{2}+ 6x + 10x + 20 = 0

Gives x = -10/3, -2

3y^{2}+ 8y + 4 = 0

3y^{2}+ 6y + 2y + 4 = 0

Gives y = -2, -2/3

put on number line

-10/3 -2 -2/3

**AffairsCloud Recommends Oliveboard Mock Test**

**AffairsCloud Ebook - Support Us to Grow**

**Govt Jobs by Category**

**Bank Jobs Notification**