Current Affairs PDF

Aptitude Questions: Permutations & Combinations Set 6

AffairsCloud YouTube Channel - Click Here

AffairsCloud APP Click Here

Hello Aspirants. Welcome to Online Reasoning Section in AffairsCloud.com. Here we are creating question sample in coded Permutations & Combinations, which is common for all the  competitive exams. We have included Some questions that are repeatedly asked in bank exams !!

Questions Penned by Yogit

  1. How many 3 digit number can be formed with the digits 5, 6, 2, 3, 7 and 9 which are divisible by 5 and none of its digit is repeated?
    a) 12
    b) 16
    c) 20
    d) 24
    e) None of these
    Answer – c) 20
    Explanation :
    _ _ 5
    first two places can be filled in 5 and 4 ways respectively so, total number of 3 digit number = 5*4*1 = 20

  2. In how many different ways can the letter of the word ELEPHANT be arranged so that vowels always occur together?
    a) 2060
    b) 2160
    c) 2260
    d) 2360
    e) None of these
    Answer – b) 2160
    Explanation :
    Vowels = E, E and A. They can be arranged in 3!/2! Ways
    so total ways = 6!*(3!/2!) = 2160

  3. There are 4 bananas, 7 apples and 6 mangoes in a fruit basket. In how many ways can a person make a selection of fruits from the basket.
    a) 269
    b) 280
    c) 279
    d) 256
    e) None of these
    Answer – c) 279
    Explanation :
    Zero or more bananas can be selected in 4 + 1 = 5 ways (0 orange, 1 orange, 2 orange, 3 orange and 4 orange)
    similarly apples can be selected in 7 +1 = 8 ways
    and mangoes in 6 +1 = 7 ways
    so total number of ways = 5*8*7 = 280
    but we included a case of 0 orange, 0 apple and 0 mangoes, so we have to subtract this, so 280 – 1 = 279 ways

  4. There are 15 points in a plane out of which 6 are collinear. Find the number of lines that can be formed from 15 points.
    a) 105
    b) 90
    c) 91
    d) 95
    e) None of these
    Answer – c) 91
    Explanation :
    From 15 points number of lines formed = 15c2
    6 points are collinear, number of lines formed by these = 6c2
    So total lines = 15c2 – 6c2 + 1 = 91

  5. In how many ways 4 Indians, 5 Africans and 7 Japanese be seated in a row so that all person of same nationality sits together
    a) 4! 5! 7! 3!
    b) 4! 5! 7! 5!
    c) 4! 6! 7! 3!
    d) can’t be determined
    e) None of these
    Answer – a) 4! 5! 7! 3!
    Explanation :
    4 Indians can be seated together in 4! Ways, similarly for Africans and Japanese in 5! and 7! respectively. So total ways = 4! 5! 7! 3!

  6. In how many ways 5 Americans and 5 Indians be seated along a circular table, so that they are seated in alternative positions
    a) 5! 5!
    b) 6! 4!
    c) 4! 5!
    d) 4! 4!
    e) None of these
    Answer – c) 4! 5!
    Explanation :
    First Indians can be seated along the circular table in 4! Ways and now Americans can be seated in 5! Ways. So 4! 5! Ways

  7. 4 matches are to be played in a chess tournament. In how many ways can result be decided?
    a) 27
    b) 9
    c) 81
    d) 243
    e) None of these
    Answer – c) 81
    Explanation :
    Every chess match can have three result i.e. win, loss and draw
    so now of ways = 3*3*3*3 = 81 ways

Q(8 –9) There are 6 players in a cricket which is to be sent to Australian tour. The total number of members is 12.

  1. If 2 particular member is always included
    a) 210
    b) 270
    c) 310
    d) 420
    e) None of these
    Answer – a) 210
    Explanation :
    only 4 players to select, so it can be done in 10c4 = 210

  2. If 3 particular player is always excluded
    a) 76
    b) 82
    c) 84
    d) 88
    e) None of these
    Answer – c) 84
    Explanation :
    6 players to be selected from remaining 9 players in 9c6 = 84 ways

  3. In a group of 6 boys and 5 girls, 5 students have to be selected. In how many ways it can be done so that at least 2 boys are included
    a) 1524
    b) 1526
    c) 1540
    d) 1560
    e) None of these
    Answer – b) 1526
    Explanation :
    6c2*5c3 + 6c3*5c2 + 6c4*5c1 + 6c5

Note: Dear Readers if you have any doubt in any chapter in Quants you can ask here. We will clear your doubts