Current Affairs PDF

Aptitude Questions: Quadratic Equations Set 15

AffairsCloud YouTube Channel - Click Here

AffairsCloud APP Click Here

Hello Aspirants. Welcome to Online Quantitative Aptitude Section in AffairsCloud.com. Here we are creating sample questions in Quadratic Equations which is common for all the competitive exams. We have included Some questions that are repeatedly asked in bank exams !!!

Follow the link To solve Quadratic Equations with the help of Number Line

  1. x2 – 18x + 72= 0, 5y2 – 18y + 9 = 0
    A) If X > Y
    B) If X < Y
    C) If X ≥ Y
    D) If X ≤ Y
    E) If X = Y or relation cannot be established
    A) If X>Y
    Explanation:

    x2 – 18x + 72= 0
    (x-12)(x-6) = 0
    Gives x = 6, 12
    5y2 – 18y + 9 = 0
    5y2 – 15y – 3y + 9 = 0
    Gives y = 3/5, 3
    Put on number line
    3/5       3            6               12

  2. x2 = 4, 3y2 – 4y – 4 = 0
    A) If X > Y
    B) If X < Y
    C) If X ≥ Y
    D) If X ≤ Y
    E) If X = Y or relation cannot be established
    E) If X=Y or cannot be established
    Explanation:

    x2 = 4
    Gives x = 2 , -2
    3y2 – 4y – 4 = 0
    3y2 – 6y + 2y – 4 = 0
    Gives y = -2/3, 2
    Put on number line
    -2      -2/3        2
    When y = 2, y ≥ x
    When y = -2/3, y > x(-2) and y < x(2)
    So no relation

  3. 6x2 – 5x – 6 = 0, 2y2 – 13y + 20 = 0
    A) If X > Y
    B) If X < Y
    C) If X ≥ Y
    D) If X ≤ Y
    E) If X = Y or relation cannot be established
    B) If X < Y
    Explanation:

    6x2 – 5x – 6 = 0
    6x2 – 9x + 4x – 6 = 0
    Gives x = -2/3, 3/2
    2y2 – 13y + 20 = 0
    2y2 – 8y – 5y +20 = 0
    Gives y = 4, 5/2
    Put on number line
    -2/3       3/2        5/2        4

  4. 2x2 – 5x = 0, 2y2 + 7y – 4 = 0
    A) If X > Y
    B) If X < Y
    C) If X ≥ Y
    D) If X ≤ Y
    E) If X = Y or relation cannot be established
    E) If X=Y or cannot be established
    Explanation:

    2x2 – 5x = 0
    x(2x-5) = 0
    Gives x = 0, 5/2
    3y2 – 7y – 6 = 0
    3y2 – 9y + 2y – 6 = 0
    Gives y = -2/3, 3
    Put on number line
    -2/3        0           5/2               3

  5. 2x2 + 5x + 2= 0, 2y2 + 19y + 45 = 0
    A) If X > Y
    B) If X < Y
    C) If X ≥ Y
    D) If X ≤ Y
    E) If X = Y or relation cannot be established
    A) If X > Y
    Explanation:

    2x2 + 5x + 2= 0
    2x2 + 4x + x + 2= 0
    Gives x = -1/2, -2
    2y2 + 19y + 45 = 0
    2y2 + 10y + 9y + 45 = 0
    Gives y= -10/2, -9/2
    Put on number line
    -10/2           -9/2            -2                 -1/2

  6. x2 + x – 20 = 0, 2y2 + 13y + 15 = 0
    A) If X > Y
    B) If X < Y
    C) If X ≥ Y
    D) If X ≤ Y
    E) If X = Y or relation cannot be established
    E) If X = Y or relation cannot be established
    Explanation:

    x2 + x – 20 = 0
    (x+5)(x-4) = 0
    Gives x = -5, 4
    2y2 + 13y + 15 = 0
    2y2 + 10y + 3y + 15 = 0
    Gives y = -5, -3/2
    Put on number line
    -5        -3/2              4

  7. 5x2 – 7x – 6 = 0, 5y2 + 23y + 12 = 0
    A) If X > Y
    B) If X < Y
    C) If X ≥ Y
    D) If X ≤ Y
    E) If X = Y or relation cannot be established
    C) If X ≥ Y
    Explanation:

    5x2 – 7x – 6 = 0
    5x2 – 10x + 3x – 6 = 0
    Gives x = -3/5, 2
    5y2 + 23y + 12 = 0
    5y2 + 20y + 3y + 12 = 0
    Gives y = -4, -3/5
    Put on number line
    -4          -3/5             2

  8. 3x2 + 8x + 5 = 0, 2y2 + y – 1 = 0
    A) If X > Y
    B) If X < Y
    C) If X ≥ Y
    D) If X ≤ Y
    E) If X = Y or relation cannot be established
    D) If X ≤ Y
    Explanation:

    3x2 + 8x + 5 = 0
    3x2 + 3x + 5x + 5 = 0
    Gives x = -1, -5/3
    2y2 + y – 1 = 0
    2y2 + 2y – y -1 = 0
    Gives y = -1, 1/2
    put on number line
    -5/3        -1            1/2

  9. 2x + 5y = 23.5, 5x+ 2y = 22
    A) If X > Y
    B) If X < Y
    C) If X ≥ Y
    D) If X ≤ Y
    E) If X = Y or relation cannot be established
    B) If X < Y
    Explanation:

    Solve the equations, x = 3, y = 3.5

  10. 2x2 – 9x + 10 = 0, 2y2 + 7y – 4 = 0
    A) If X > Y
    B) If X < Y
    C) If X ≥ Y
    D) If X ≤ Y
    E) If X = Y or relation cannot be established
    A) If X > Y
    Explanation:

    2x2 – 9x + 10 = 0
    2x2 – 9x – 5x + 10 = 0
    Gives x = 2, 5/2
    2y2 + 7y – 4 = 0
    2y2 + 8y – y – 4 = 0
    Gives y = -4, 1/2
    put on number line
    -4        1/2        2       5/2