Hello Aspirants. Welcome to Online Quantitative Aptitude Section in AffairsCloud.com. Here we are creating sample questions in**Quadratic Equations** which is common for all the competitive exams. We have included Some questions that are repeatedly asked in bank exams !!!

Follow the link **To solve Quadratic Equations with the help of Number Line**

**6x**^{2}– x – 2 = 0, 5y^{2}– 18y + 9 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**E) If X = Y or relation cannot be established**

Explanation:

6x^{2}– x – 2 = 0

6x^{2}+ 3x – 4x – 2 = 0

Gives x = -1/2, 2/3

5y^{2}– 18y + 9 = 0

5y^{2}– 15y – 3y + 9 = 0

Gives y = 3/5, 3

Put on number line

-1/2 3/5 2/3 3**3x**^{2}– 4x – 4 = 0, 4y^{2}+ 23y + 15 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**A) If X > Y**

Explanation:

3x^{2}– 4x – 4 = 0

3x^{2}+ 2x – 6x – 4 = 0

Gives x = -2/3 , 2

4y^{2}+ 23y + 15 = 0

4y^{2}+ 20y + 3y + 15 = 0

Gives y = -5, -3/4

Put on number line

-5 -3/4 -2/3 2**3x**^{2}– 4x – 4 = 0 , 3y^{2}+ 14y + 8 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**C) If X ≥ Y**

Explanation:

3x^{2}– 4x – 4 = 0

3x^{2}– 6x + 2x – 4 = 0

Gives x = -2/3, 2

3y^{2}+ 14y + 8 = 0

3y^{2}+ 12y + 2y + 8 = 0

Gives y = -4, -2/3

Put on number line

-4 -2/3 2**2x**^{2}+ 17x + 30 = 0, 6y^{2}– 5y – 6 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**B) If X < Y**

Explanation:

2x^{2}+ 17x + 30 = 0

2x^{2}+ 12x + 5x + 30 = 0

Gives x = -6, -5/2

6y^{2}– 5y – 6 = 0

6y^{2}– 9y + 4y – 6 = 0

Gives y = -2/3, 3/2

Put on number line

-6 -5/2 -2/3 3/2**3x**^{2}– 7x – 6 = 0 , 4y^{2}– 11y + 6 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**E) If X = Y or relation cannot be established**

Explanation:

3x^{2}– 7x – 6 = 0

3x^{2}– 9x + 2x – 6 = 0

Gives x = -2/3, 3

4y^{2}– 11y + 6 = 0

4y^{2}– 8y – 3y + 6 = 0

Gives y= 3/4 2

Put on number line

-2/3 3/4 2 3**2x**^{2}+ 5x + 2= 0 , 4y^{2}– 7y – 2 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**B) If X < Y**

Explanation:

2x^{2}+ 5x + 2= 0

2x^{2}+ 4x + x + 2= 0

Gives x = -1/2, -2

4y^{2}– 7y – 2 = 0

4y^{2}– 8y + y – 2 = 0

Gives y = -1/4 2

Put on number line

-2 -1/2 -1/4 2**x**^{2}– x – 6 = 0, 5y^{2}– 7y – 6 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**E) If X = Y or relation cannot be established**

Explanation:

x^{2}– x – 6 = 0

x^{2}– 2x + 3x – 6 = 0

Gives x = -3, 2

5y^{2}– 7y – 6 = 0

5y^{2}– 10y + 3y – 6 = 0

Gives y = -3/5, 2

Put on number line

-3 -3/5 2**2x**^{2}– 9x + 4 = 0, 3y^{2}+ 5y – 2 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**A) If X > Y**

Explanation:

2x^{2}– 9x + 4 = 0

2x^{2}– 8x – x + 4 = 0

x = 4 , 1/2

3y^{2}+ 5y – 2 = 0

3y^{2}+ 6y – y – 2 = 0

Gives y = -2, 1/3

Put on number line

-2 1/3 1/2 4**3x**^{2}– 10x + 8 = 0, 3y^{2}+ 8y – 16 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**C) If X ≥ Y**

Explanation:

3x^{2}– 10x + 8 = 0

3x^{2}– 6x – 4x + 8 = 0

Gives x = 2, 4/3

3y^{2}+ 8y – 16 = 0

3y^{2}+ 12y – 4y – 16 = 0

Gives y = -4, 4/3

Put on number line

-4 4/3 2**5x**^{2}– 13x – 6 = 0, 3y^{2}+ 8y + 4 = 0

A) If X > Y

B) If X < Y

C) If X ≥ Y

D) If X ≤ Y

E) If X = Y or relation cannot be established**A) If X > Y**

Explanation:

5x^{2}– 13x – 6 = 0

5x^{2}+ 2x – 15x – 6 = 0

Gives x = -2/5, 3

3y^{2}+ 8y + 4 = 0

3y^{2}+ 6y + 2y + 4 = 0

Gives y = -2, -2/3

put on number line

-2 -2/3 -2/5 3

**AffairsCloud Recommends Oliveboard Mock Test**

**AffairsCloud Ebook - Support Us to Grow**

**Govt Jobs by Category**

**Bank Jobs Notification**